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Abstract

The work in this paper concerns the axisymmetric pipe flow of a Herschel-
Bulkley fluid, with the aim of determining a relation between the critical
velocity (defining the transition between laminar and turbulent flow)
and the pipe diameter in terms of the Reynolds number Re3. The
asymptotic behaviour for large and small pipes is examined and sim-
ple expressions for the leading order terms are presented. Results are
then compared with experimental data. A nonlinear regression analysis
shows that for the tested fluids the transition occurs at similar values
to the Newtonian case, namely in the range 2100 < Re3 < 2500.

1 Introduction

Yield stress fluids are transported through pipes in a number of different indus-
tries, such as the transport of crude oil, mining slurries, liquid food, bio-fluids
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or sewage sludge, see [5, 7, 9] for example. To prevent blockage of the pipe, any
coarse settleable material present must be kept suspended. This is achieved
by keeping the velocity sufficiently high so that the flow remains turbulent.
However, the higher the velocity, the more expensive the operation and conse-
quently designers and operators attempt to maintain the flow at a level only
slightly above the laminar-turbulent transition point. Obviously this is a risky
strategy, errors can lead to expensive pipe blockage, and so it is critical that
this transition point is accurately identified.

The laminar-turbulent transition point for Newtonian fluids is well known
and defined in terms of the Reynolds number,

Re =
ρV D

η
≈ 2300 , (1)

where the notation is defined with the other nomenclature in Section 6. For
yield stress fluids the matter is not so simple, one problem being that there is
not a unique definition for the Reynolds number for these fluids. Metzner &
Reed [6] proposed a generalised Reynolds number

ReMR =
8ρV 2

τ0l
, (2)

where τ0l should be evaluated for laminar flow conditions. Wasp et al [16]
define a Reynolds number based on the Hedstrom number

ReW = 1500

1 +
√
1 +

ρD2τy
4500K2

 (3)

A common generalisation of the Newtonian Reynolds number, Rew, in-
volves defining the viscosity at the wall, so η = ηw, where ηw is the ratio of
the shear stress and shear rate at the wall, see [2, 8, 15] for example. For a
yield stress fluid flowing in a pipe, Slatter [9, 12] proposes a formulation that
takes this concept even further. Instead of focussing on the flow solely at the
pipe wall they include the flow in the annular region surrounding the central
plug. The plug flow is neglected based on the premise that this does not form
part of the sheared region, and is not behaving as a fluid. The analysis leads
to what is termed Re3 where

Re3 =
8ρV 2

a

τy +K
(
8Va

Da

)n . (4)
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Not only is the appropriate form of the Reynolds number the subject of
debate, there is also confusion over the value at which the transition occurs,
although this is most likely fluid dependent. In [3] the flow of a Laponite fluid
(a water and synthetic clay mixture) is investigated, using a Herschel-Bulkley
model, and their experiments indicate a transition to turbulence for Rew ∼
3400. Rudman et al [8] suggest that as the power law exponent decreases, so
the flow moves further away from Newtonian, and the transitional value of
Rew increases. Their experiments indicate that transition occurs for Rew ∈
[1300, 3000] . However, in [2] it is stated that for drag-reducing polymers the
transition point is located at approximately the same Reynolds number as for
the (Newtonian) solvent Re ≈ 2300. The experimental results of Slatter [13]
confirm this by showing that choosing Re3 anywhere in the range [2100, 2400]
provides accurate results for the transition. The principal objective of Slatters
work [9, 10, 11, 12, 13] was to establish a simple, single criterion for transition
such as exists for Newtonian pipe flow e.g. Re = 2300 [13]. In Section 4 we
will show that Re3 ∼ 2300 provides good agreement with experimental data.

The Reynolds number depends on both the velocity and pipe diameter.
For a given pipe diameter, to maintain turbulent flow, the mean fluid velocity
must be kept above a critical value Vc. The main focus of this work is to find a
simple relation between the critical mean velocity, Vc, and the pipe diameter,
D, for large pipes. For sufficiently large pipes, D = O(1)m, experimental
observations indicate that the critical velocity becomes independent of the
pipe diameter. In this limit, dimensional analysis shows that the dependence
of Vc then takes the form

Vc = C(n)

√
τy
ρ

. (5)

However, the dimensional analysis cannot determine the form of the coefficient
C(n), which must at present be approximated numerically for a given fluid.
Our goal is therefore to find an analytical expression for C(n).

The structure of the report is as follows. In Section 2 we reproduce s-
tandard results to describe the flow of a Herschel-Bulkley fluid in a pipe. In
Section 3 these results are used to determine the large and small diameter
pipe asymptotes on the critical velocity-pipe diameter diagram. In particular
we determine an analytical expression for C(n). In Section 4 we compare our
analytical model with the experimental data of Slatter [13].
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2 Determination of the velocity profile in a

pipe

Under conditions of fully developed, steady-state, one dimensional laminar
pipe flow, a yield-stress fluid will shear in the annular region next to the pipe
wall. Near the centre of the pipe, where the applied shear stresses are less than
the yield stress, there will be a solid, unsheared plug which is carried along
by the applied pressure gradient at the highest velocity. Velocity profiles are
quoted in [3, 7] and a brief derivation is given in [4, 14] using a force balance.
The plug region is discussed in [14] but with no details on how to determine
the transition point between plug and fluid regions.

D Dp

Sheared Annulus

R

rp

Pipe
Wall

Unsheared
Plug

Figure 1: Steady, unidirectional flow geometry.

2.1 Governing equations

The flow geometry is depicted in Figure 1. A plug, with diameter Dp = 2rp, is
surrounded by an annulus of moving fluid through a pipe of diameter D. We
assume that the flow is unidirectional and steady. Consequently we may write
the velocity vector as u = (0, w(r)). The z axis lies along the centreline of the
pipe and w is the velocity in the z direction. The shear stress depends on wr,
and so is also independent of z. The Navier-Stokes equations therefore reduce
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to the simple form

∂p

∂r
= 0 ,

1

r

∂

∂r
(rτ) =

∂p

∂z
. (6)

The first equation indicates p = p(z) and so the second may be integrated to
give

τ =
r

2

dp

dz
+

c0
r

, (7)

where c0 is the integration constant. After the stress-strain relation has been
specified, equation (7) must be solved subject to four boundary conditions:
symmetry at r = 0, zero velocity at r = R and continuity of velocity and
stress at the yield surface r = rp,

dw

dr

∣∣∣∣∣
r=0

= 0 , w(R) = 0 , [w]r=rp = [τ ]r=rp = 0 . (8)

2.2 Biviscosity model

At this stage we must specify a shear stress relation. Perhaps the simplest
way to mathematically deal with a yield stress fluid is to begin with a bivis-
cosity model. Once the velocities are determined in the two regions we let
the viscosity become infinite in the low stress region, thus producing a solid
central region. Note, if the analysis is carried through from the start with a
central plug then there is no way to determine the plug velocity. We therefore
approximate the Herschel-Bulkley fluid model by

τ =


η1
dw

dr
, |τ | < τm

−τc −K

(
−dw

dr

)n

, |τ | > τm ,

where η1 is the viscosity for low shears and K is the consistency index for
high shear, τm is the shear stress where the two models coincide and −τc is
the intercept of the second viscosity model with the τ axis. We have taken
−τc since wr < 0 throughout the pipe, and so the shear stress will be negative
everywhere. In the limit η1 → ∞ both stresses tend to the yield stress, τc, τm →
τy. The relation between stress and shear rate is shown in Figure 2.
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m

wr

τ

−τ
−τc

Figure 2: Stress versus shear rate for a biviscosity fluid.

In the central region of the pipe the shear stress is low and so we substitute
the stress relation for |τ | < τm into equation (7):

η1
dw1

dr
=

r

2

dp

dz
+

c0
r

, (9)

where, to avoid confusion we write w = w1 in this region. At r = 0, the gradient
is zero and so c0 = 0. The fluid velocity in the ‘plug’ region is therefore given
by

w1 =
r2

4η1

dp

dz
+ c1 , r ≤ rp . (10)

The constant c1 can only be determined once we have calculated w2, the fluid
velocity away from the plug.

The radius of the plug region may now be determined. At the yield surface
the stress |τ | = τm and so

−τm = η1
dw1

dr
=

rp
2

dp

dz
(11)

which implies that

rp = −2τm
pz

. (12)
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Note that the plug radius depends only upon the yield stress and pressure
gradient and is independent of the fictitious viscosity η1. The same result may
be obtained using the velocity profile in the annular flow region.

The region close to the pipe wall is subject to high shear and we substitute
the expression for |τ | > τm into (7):

−K

(
−dw2

dr

)n

= τc +
r

2

dp

dz
+

c2
r

. (13)

At present, we cannot integrate this equation but progress can be made by
imposing continuity of shear stress at r = rp:

η1
dw1

dr
= −τc −K

(
−dw2

dr

)n

(14)

and therefore

rp
2

dp

dz
= −τc + τc +

rp
2

dp

dz
+

c2
rp

. (15)

This shows that c2 = 0 and we can now integrate equation (13) subject to
w(R) = 0 to give

w2 =
2n

(n+ 1)pzK1/n

[(
−pzr

2
− τc

)(n+1)/n

−
(
−pzR

2
− τc

)(n+1)/n
]
. (16)

The final unknown c1, in equation (10), is determined by imposing continuity
of velocity at r = rp:

r2p
4η1

dp

dz
+ c1 =

2n

(n+ 1)pzK1/n

[(
−pzrp

2
− τc

)(n+1)/n

−
(
−pzR

2
− τc

)(n+1)/n
]
. (17)

Using equation (12) the velocity in the plug region may now be written

w1 =
(r2 − r2p)

4η1

dp

dz
+

2n

(n+ 1)pzK1/n

[
(τm − τc)

(n+1)/n

−
(
−pzR

2
− τc

)(n+1)/n
]
. (18)
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In the limit η1 → ∞ we find the true plug velocity

w1 = − 2n

(n+ 1)pzK1/n

(
−pzR

2
− τy

)(n+1)/n

. (19)

The velocity profile in the pipe is now specified for a Herschel-Bulkley fluid
by equations (16) and (19), where the first holds for rp ≤ r ≤ R and the second
for 0 ≤ r ≤ rp. We can retrieve the result given in [9] by first calculating the
wall shear stress and replacing the radius with the pipe diameter, R = D/2.
In general the stress in the fluid region is

τ = −τy −K

(
−dw2

dr

)n

=
pzr

2
, (20)

where we have replaced τc with τy now that η1 → ∞. The wall shear stress,
τ = −τ0, is obtained by setting r = R. This also allows us to remove the
pressure gradient pz = −4τ0/D. Hence we may write the velocity in the fluid
region as

w =
Dn

2(n+ 1)τ0K1/n

[
(τ0 − τy)

(n+1)/n − (τ − τy)
(n+1)/n

]
. (21)

The plug velocity w = w1 can be obtained by setting τ = τy in (21)

wp =
Dn

2(n+ 1)τ0K1/n
(τ0 − τy)

(n+1)/n . (22)

In Figure 3 two velocity profiles are shown for flow in a pipe with pz = −600,
τy = 10, D = 0.1, K = 0.005 and two values for the power n = 0.9, 1. These
values result in a plug radius rp = 0.0333m (independent of n). The plug
radius is marked with a ∗. The shear thinning fluid, with n = 0.9, moves
faster than the Bingham fluid.

The mean fluid velocity in the pipe, V , is defined as

V =
2π

πR2

[∫ rp

0
rwp dr +

∫ R

rp
rw dr

]
(23)

=
Dn

2K1/nτ 30
(τ0 − τy)

(n+1)/n
[
(τ0 − τy)

2

3n+ 1
+

2τy(τ0 − τy)

2n+ 1
+

τ 2y
n+ 1

]
. (24)

This will be used in Section 3 to determine the transitional velocity.
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Figure 3: Velocity profiles for two Herschel-Bulkley fluids (K = 0.005, pz =
−600 and τy = 10), with n = 0.9 and n = 1.

2.3 Force balance derivation

An alternative way to derive the velocity profile in a Herschel-Bulkley fluid is
to use a force balance, see [4, 14] for example. A simple force balance on a
cylindrical element of radius r and length dL yields

−πr2dp = 2πrτdL which implies τ = −r

2

dp

dL
. (25)

Then for the Herschel-Bulkley flow we know that τ satisfies

τ = τy +Kγ̇n , (26)

where γ̇ is the modulus of the shear rate, which is simply −wr in a pipe.
Combining (25) and (26) gives

−dw

dr
=

1

K1/n

(
−r

2

dp

dL
− τy

)1/n

. (27)
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After integrating and applying the no-slip condition on r = R, we obtain

w =
2n

(n+ 1)

1

K1/n
(
− dp

dL

)
(−R

2

dp

dL
− τy

)(n+1)/n

−
(
−r

2

dp

dL
− τy

)(n+1)/n
 , (28)

which is obviously identical to w2 in (16).

3 Asymptotes for large and small D

Now that the velocity profile has been calculated we can determine the relation
between the Reynolds number Re3, the mean velocity V and the pipe diameter
D. The aim of this analysis is to find the critical velocity, V = Vc, above
which the flow is turbulent. As discussed in the introduction this occurs when
Re3 ∼ 2300. So the following analysis will lead to a relation of the form
V = f(Re3, D) and by setting Re3 = 2300 we determine the relation between
Vc and D.

The definition for Re3 is given by equation (4) where

Va =
Qa

Aa

, Da = D −Dp = 2(R− rp) , (29)

represent the average velocity and diameter of the annular region. The flux in
the annular region is the total flux minus the flux of the plug region:

Qa = Q−Qp = Q− wpAp = Q− wpπr
2
p , (30)

and so

Va =
Q− wpπr

2
p

π(R2 − r2p)
. (31)

Equations (12) and (22) define rp and wp respectively. The total flux
Q = V A = V πR2. From the definition of the stress (20) we find the ratio
rp/R = τy/τ0. Using this and the definitions of V and wp we may write Va in
(31) as

Va =
V πR2 − wpπr

2
p

π(R2 − r2p)
=

V τ 20 − wpτ
2
y

τ 20 − τ 2y

=
Dn

2K1/n

(τ0 − τy)
(n+1)/n

τ0(τ0 + τy)

[
τ0 − τy
3n+ 1

+
2τy

2n+ 1

]
. (32)
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Similarly Da from (29) becomes

Da =
D(τ0 − τy)

τ0
. (33)

We now proceed to determine the large and small D asymptotes. The large
D asymptote is the most physically interesting; industrial slurries are seldom
transported through narrow pipes. However, we will start with the small D
case since this is the simplest to deal with analytically.

3.1 The small D asymptote

As D → 0 then the high shear rates required to move the fluid will confine the
plug to a small region near r = 0. This means that rp ≪ R and consequently
Da ≈ D and the average annular velocity Va ≈ V . Furthermore, since rp/R =
τy/τ0 ≪ 1 the wall stress is much greater than the yield stress. In the limit
τy ≪ τ0 the average velocity defined by (24) (or equation (32) since Va ≈ V )
becomes

Va = V =
Dnτ

1/n
0

2K1/n(3n+ 1)
, (34)

to leading order in τy/τ0. The relation (34) shows that the term involving τy
in the denominator of Re3 defined by (4) may be neglected since

τy +K
(
8Va

Da

)n

= τy + τ0

(
4n

3n+ 1

)n

≈ τ0

(
4n

3n+ 1

)n

,

provided n ≫ (τy/τ0)
1/n/4. Hence the Reynolds number may be written

Re3 ≈
8ρV 2

K

(
D

8V

)n

.

Rearranging this gives an expression for V in terms of D

V =

(
8n−1KRe3

ρDn

)1/(2−n)

, (35)

which defines the small D asymptote. The critical velocity Vc is then
obtained by setting the Reynolds number to the critical value Re3 = 2300.
Note that V ∼ D−n/(2−n) and in the Bingham limit n = 1, then V ∼ 1/D for
small D.
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3.2 The large D asymptote

Given that τy, K and n are fluid properties, then by inspection of equation
(24) we can see that for a fixed value of V, as the pipe diameter D is increased,
the wall stress value must approach the yield stress [9], τ0 → τy as D → ∞.
Thus for large D a high proportion of the slurry will be at the yield stress
and the plug therefore occupies most of the pipe. Experiments also show
that the transition velocity Vc becomes independent of D as D → ∞ [9].
From examining (24) it is clear that the only way the velocity can become
independent of D is if (τ0− τy)

(n+1)/n = O[D−1] as D → ∞. This motivates us
to look for an expansion of τ0−τy in terms of the small parameter ϵ = D−n/(n+1),

τ0 = τy + α0D
−n/(n+1) + α1D

−2n/(n+1) +O((D−n/(n+1))3)

= τy + ϵα0 + ϵ2α1 +O(ϵ3) , (36)

where the expansion is valid provided ϵ ≪ τy/α0, ϵα1 ≪ α0. The constants
αi = O(1) are unknown at present and are determined as part of the analysis
below.

Before substituting Va and Da into (4), it is convenient to replace τ0 using
(36) to find the dominant terms from these expressions. Thus, neglecting terms
of O(ϵ3),

Va =
Dn

2K1/n

(ϵα0)
(n+1)/n (1 + ϵα1/α0)

(n+1)/n

τ 2y (1 + ϵα0/τy + ϵ2α1/τy) (2 + ϵα0/τy + ϵ2α1/τy)[
2τy

2n+ 1
+

ϵα0(1 + ϵα1/α0)

3n+ 1

]
.

To first order in ϵ this reduces to

Va =
nα

(n+1)/n
0

2(2n+ 1)K1/nτy

[
1 +

{
(n+ 1)α1

nα0

− (7n+ 2)α0

2(3n+ 1)τy

}
ϵ

]
(37)

and similarly

Da = D
(
τ0 − τy

τ0

)
=

ϵDα0

τy

[
1 +

(
α1

α0

− α0

τy

)
ϵ

]
. (38)

Note that since D is large, the term ϵD = D1/(n+1) ≫ ϵ. Using these expres-
sions we find

8Va

Da

=
4nα

1/n
0 ϵ1/n

(2n+ 1)K1/n

[
1 +

(
α1

nα0

− nα0

2τy(3n+ 1)

)
ϵ

]
.



The laminar-turbulent transition of yield stress fluids in large pipes 13

To first order in ϵ the Reynolds number Re3 becomes

Re3 =
2ρn2α

2(n+1)/n
0

(2n+ 1)2K2/nτ 3y

[
1 +

{
2(n+ 1)α1

nα0

− α0

τy

((
4n

2n+ 1

)n

+
7n+ 2

3n+ 1

)}
ϵ
]
. (39)

This expression permits us to determine α0, α1. The leading order terms on the
right hand side balance with Re3, the first order terms must be zero. Therefore

α0 =

(
(2n+ 1)2K2/nτ 3yRe3

2ρn2

)n/(2(n+1))

,

α1 =
nα2

0

2τy(n+ 1)

((
4n

2n+ 1

)n

+
7n+ 2

3n+ 1

)
. (40)

Equation (39) provides a relation between Re3 and D (through the small pa-
rameter ϵ). We must now bring in the mean velocity to find the relation
between V and D.

The mean velocity, defined by (24), to first order in ϵ is

V =
nα

(n+1)/n
0

2(n+ 1)K1/nτy

[
1 +

(
n+ 1

n

α1

α0

− 4n+ 1

2n+ 1

α0

τy

)
ϵ

]
. (41)

Writing V = V0 + ϵV1 we can identify the leading and first order terms

V0 =
nα

(n+1)/n
0

2(n+ 1)K1/nτy
, V1 = V0

(
n+ 1

n

α1

α0

− 4n+ 1

2n+ 1

α0

τy

)
. (42)

Substituting for α0, via equation (40), in the expression for V0 and rearranging
leads to

V0 =
2n+ 1

n+ 1

√
Re3
8

√
τy
ρ

= C(n)

√
τy
ρ

. (43)

As discussed in the introduction, finding the expression in (43) is our main
goal. This equation identifies the asymptote as D → ∞ and the form of the
fluid constant C(n). However, using the correction term V1 we can find the
form of the curve for smaller D and so get closer to the transition between the
small and large D asymptotes.
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Figure 4: Schematic of velocity against pressure gradient for water and slurry
flows.

4 Results

The material under test is pumped through a pipe test rig over a range of
velocities [9, 13]. The data is then compared with the expression for average
velocity, equation (26). In laminar flow, the data agrees closely, whereas, in
turbulent flow, the data departs sharply. Transition is identified as that point
at which the data begins to depart from equation (26). Figure 4 depicts this
transition. With a Newtonian fluid the velocity increases monotonically with
the pressure gradient. With a slurry, initially the stress must overcome the
yield stress before flow starts. The velocity then increases rapidly with a small
change in pressure gradient until a sharp transition is reached, beyond which
a much greater change in pressure is required to increase the mean velocity.
The point where this transition occurs defines our critical velocity and this is
how the data points in Figure 6 are calculated.

The goal of this analysis is to find the critical velocity, Vc, which determines
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Figure 5: Plot of critical velocity against pipe diameter for a Bingham fluid.
The dashed line denotes the exact solution, the solid lines denote the small
(left) and large (right) D asymptotes and the dot-dashed line denotes the
leading order large D asymptote.

the transition to turbulent flow. In our numerical calculations we varied the
value of Re3 to obtain the best fit with experimental data. Excellent results
were obtained by setting Re3 = 2300 and these are presented in the figures.

In Figure 5 we plot the critical velocity Vc against D for a Bingham fluid.
The dotted line is the asymptote defined by setting Re3 = 2300 in equation
(43). This gives Vc = 2.43. The correction to the leading order result V = V0+
ϵV1 is shown as the solid line that matches the horizontal asymptote for largeD
(i.e. D approximately greater than 1m). The two lines noticeably diverge for
D < 6m. The dashed line represents the exact solution calculated numerically
from equations (4) and (32). On the left is another solid line representing
the small D asymptote of equation (35). For large D it is clear that the
asymptotic and exact results show excellent agreement. As D decreases, D <
1m, the results move away from the leading order value for critical velocity.



16 S. Mitchell and T. Myers

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

Pipe Diameter

C
rit

ic
al

 V
el

oc
ity

 V
c

n = 0.8428

K =0.0102

ρ =1071

τ
y
 =1.88

Re
3
 = 2300

Figure 6: Plot of critical velocity against pipe diameter for a Herschel-Bulkley
fluid. The ∗’s denote the experimental data, the dashed line denotes the exact
solution, the solid lines denote the small (left) and large (right) D asymptotes.

The first order correction permits the asymptotic solution to be comparable
with the exact solution down to D ≈ 0.1m. Below this value the critical
velocity increases rapidly. For D < 2mm the small D asymptote provides a
good approximation to the exact solution.

In Figure 6 we show results for a Herschel-Bulkley fluid with n = 0.8428.
The experimental data points, marked with a ’*’, are taken from [9]. The
results show the same behaviour as in Figure 5. For large D the leading order
and first order correction tend to the same value, in this case Vc ≈ 0.989.
They noticeably diverge for D < 0.1m. In the case D ≈ 1mm the small D
asymptote provides a good approximation. In addition, good agreement with
the experimental results can be observed.
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5 Conclusion

The main aim of the work described in this paper has been to determine
an analytical form for the coefficient C(n) in the expression for the critical
velocity at large pipe diameters. To achieve this we first had to calculate the
velocity profile in a pipe for a Herschel-Bulkley fluid. It was discovered that
for large D the wall stress was close to the yield stress. This allowed us to
simplify the solutions using an asymptotic expansion based on the difference
τ0 − τy ≪ 1. At leading order we could then determine an expression for
C(n) = (2n+ 1)

√
Re3/((n+ 1)

√
8).

The work shows that by using Re3 as the non-dimensional grouping to
describe the transition to turbulence leads to the correct behaviour at large
and small pipe diameters. In particular it was found that the transition occurs
around Re3 = 2300 for a yield stress fluid, for both large and small diameters.

Comparison with experimental data for a Herschel-Bulkley fluid shows that
both large and small D asymptotes are accurate for a large range of pipe
diameter, provided we set Re3 = 2300. In general we found the intermediate
region, where neither approximation holds, is typically between 1mm and 1cm,
which is of little practical interest.

In future it is intended to extend both small and large D asymptotics, with
the hope of better matching in the intermediate region. Further comparison
with experimental data will be carried out including an investigation into the
critical value of Re3, for both large and small diameters.

6 Nomenclature

τ shear stress w velocity
p pressure V mean fluid velocity
R pipe radius D pipe diameter
η fluid viscosity ρ density
τy yield stress τ0 wall shear stress
K fluid consistency index n flow behaviour index
Re Reynolds number Q flux
Vc critical velocity γ̇ modulus of shear rate

subscript a denotes annulus subscript p denotes plug
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